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Abstract

Referring to the Guide to the Expression of Uncertainty in Measurement (GUWB)paper proposes a
theoretical contribution to assess the uncertaintgrial, with relative confidence level, in the case of n
successive observations. The approach is based oBhikeguare and Fisher distributions and the validity is
proved by a numerical example. For a more detailedlysof the uncertainty evaluation, a model for the process
variability has been also developed.
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1. Introduction

As it is known, a random variablel characterizing the measurement process can be
associated with a measurement interval and, consequently, with the quality of results,
therefore the measure. We introduce the confidence level that can be attributed to the
occurrence of each single event associated with the vahatitethe space of all possible
measurement resultS$=1 m,;,, < M<sm__, }

So, it is possible to assign the highest confidence level, equal to one by convention, when
we have the certainty thit belongs td5; vice versa, the confidence level is minimum, equal
to zero by convention, when the valuedvbéio not belong to S.

Considering a subintervalmf, my] of S, it is possible to assign a probability to the
confidence level associated with the occurrendd @i [m,, my].

From these assumptions, the random varididleis characterized by a probability
distribution, that is a function of random events that represent the probability that the
measurement belongs to one of the possible subintervals ©he probability distribution
associated with Ms all that is known in the measurement interval.

According to the GUM [1, 2] we introduce:

P{‘M—E{M}‘skqw}zF{E{ M-kys Ms E N+ kyl= p (1)

Eqg. (1) represents the probability that the meabliie between its expected vaIlEéM}
plus or minus a quantity given by the product of the standard uncertgjrapd the coverage

factork. The parametep, denoted as confidence level, should tend to one to have a high
value of the occurrence of an event.
The interval:

g M- ky, < M< §M}+ku, )
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represents the confidence interval and it can be interpreted as that interval able to guarantee a
high probability that it contains a large number of possible valudé. dience a rise of the
value ofp leads to an increase of the number of events in wiighwithin the interval.

If the probability density functionf,, (m) of M is known, it is possible to evaluate the
confidence level by means of the following expression:

E{M}+k yy
p= [ fu(m)dm 3)

E{M}-k uy

It is now possible to indicate, explicitly, the measurement result as “uncertainty interval”
associated with a measurand with an assigned confidencelevel

So, if we suppose to know the probability density, its distribution funéigim) is also
known, given by its integral. Therefore the uncertainty interval with confidence peigel
defined by the equation:

Mp+a

Pimsmsm,}=] f(md= f( m.)- & 0= . ()

wherea is an appropriate value in the range [0, 1]. The extremes of the interval within which
M is enclosed takes the name of quantiles of the distribution furietipand we have the
following relationship:

Fu(m,)=P(M<m}=a. ®)

2. Application of the Chi-square and Fisher distribution to the estimation of the
uncertainty interval

As introduced in [3], taking again into accoumtindependent successive observations
(0,0,,---,0,) and assuming each observation as a normally distributed random variable with

expected valuen, and standard uncertainty, the chi-square distribution witm{1) degrees
of freedom can be represented by:

i —\2

> (a-o)

2 _ =
Xoa 02 (6)

0.

n
i
i=1

being the mean of such variables: =~ — also normally distributed with mean valmg and
n

2
o

reduced variance> [4].
n

The uncertainty interval can be introduced by considering the Chi-square probability
distribution with associated degrees of freedom. With the pre-arranged confidence pevel
this interval is defined as:

PIXisxi<xi.}=F(x.)-F(x)=p )
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wherea is a value in the range from zero te{f}; the extremes of the intervafz and X%+a

are, respectively, ther- and p+a)-quantiles of the distribution function of?, whose
cumulative distribution is given by:

Fv(m)=P{xfsn}:ft(3dz 8)

Ya
where: f, (2) :VZ_e‘(§)1 0< z< +0o,
22r(';j

A S-quantile is aimmg value so thatF, (m,g) = . Such quantiles are tabulated for different

values of degrees of freedomcorresponding to the respectiebut they can be obtained
more efficiently by means of specific statistic software.

Table 1 summarizes the results concerning the amplitude of the uncertainty interval with
=0.025 + 0.005 and = 1 + 100 according to Eq. (7). Consequently, four histograms®of 10
random generated observed values for different degrees of freedom fitted with Gaussian
distribution can be obtained, as shown in Fig. 1. For each case, the mean and the standard

deviation are also computed [3, 6].

Table 1. Uncertainty interval amplitude in functionoéinda.

v X 02.025 /Yc2).975 X 02.005 X 5.995
1 0.00098: 5.02¢ 0.000039 7.87¢

2 0.0586 7.378 0.01 10.597
5 0.831 12.832 0.412 16.750
10 3.247 20.483 2.156 25.188
20 9.951 34.170 7.434 39.997
50 32.357 71.420 27.991 79.490
100 74.222 129.561 47.328 140.169
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Fig. 1. Four histograms of 1@andom generated observed values for different degrees of freedom (DOF)
fitted with Gaussian distribution. Mean and standard deviation is also computed in each case.
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The ratio of two independent chi-square variables, each divided by its respective degrees of
freedom, is a random variabh_a,ly2 defined as follows:

X vy

F(V:L’VZ):Xz /V ,
vy 2

<F,,, <o, ©

The probability density function o'FVly2 can be represented by:

r |:(V1 + Vz)/2:| /2, vl mw/21 10

f(m;vl,v2)=ml ? rma,)

It can be observed that the distribution is asymmetric and, in this casgqtremntiles
mp(v1.v2) defined as:
mg(vy,v,)
P{ F(v.v,) < mﬂ(vl,vz)} = _[ f(mv,v,) dm=g. (11)
0
i ifi ideri 2 =y2 2 2 _ 2 2
This can be verified, considering thar.., =x., +x.,, and Xeovs =Xy = XE, -
Therefore it is possible to write the following expression:

1

—mﬂ (Vl, V2) . (12)

Mu-p) (V2!V1) =

3. Numerical examples

The numerical example presented in this section takes into consideration the evaluation of
the number of wrong words transmitted in an automatic measurement system. In Table 2 the
number of wrong words acquired in six different acquisition phases for two qualified error
levels, equal to 8 and 9 LSB respectively, is shown.

Table 2. Experimental wrong words measurement .

# Test Wrong words in 10 samples | Wrong words in 10’ samples
(8 LSB) (9 LSB)
77
76
64
86
71
61
Total number of 435 23
wrong words

OB IWIN|F-
HONW|AIN

The following values for both the mean and variance have been calculated:
Variable Mean Variance

wrong words 8LSB 72,50 84,36
wrong words 9LSB 3,833 4,968
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The idea behind this example is that if the standard deviation of the population is unknown
in the calculation of the confidence interval for the wrong words mean of a high-dimension
sample, it can be replaced with the sample stardiarihtion [3-5]. Therefore it can be very
useful to determine confidence intervals for the variance and standard deviation, because in
many practical applications the interval estimation for the variarfcend standard deviation
oof the population are based on the sample varisiaed the sample standard deviation

So if we assume a normal distribution for the population of random variables that represent
the wrong words transmitted, lextracting samples of size (with n = 6) it is possible to
(n-2)sf

ol
This is an important hypothesis because it leads to deal confidence intervals in non-

write the Chi-square distribution, considering Eq. 6as

symmetrical distribution. Using distributions with the same tail areas and indicating%with

the area of each tail (see Fig. 2), the confidence interval for the variance of the population,
with a confidence level, as percentage, equal te ¢0)-100%, is defined as:

_\2 _1\2
(n);)a <ot < (nX i (13)
a 1

2

N

012

0 2 2
X Lo
2

1—
3

Fig. 2. A detail of the Chi-square distribution and its tails, used in this example.

For a confidence level equal to 95% and a degree of freaden—1=5, we obtain

2 _ 2 — .
)(12_2 = Xoors = 0831 and Xa = Xopas = 12832, Consequently, recalling Eq. 13, we
2 2
deduce the following confidence interval for the population variance in terms of wrong words
and confidence level of 95% a32.85< g? < 505.42; 5.780,< 22.48 <60,<

From the results so obtained it is possible to observe that the interval, with the above
mentioned confidence level, is quite wide: this is due to the fact that the sample dimension,
for this particular experiment, can never be too high, which obviously would allow us to
reduce the interval size. A possible solution is to decrease the confidence level to 90% with
the aim to find a compromise between the interval dimension and the correlated confidence
level.
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Another frequent situation is represented by two populations with variances unknown.
However, if the sample variances are known, it is possible to compare the variances of two
populations, always assuming a normal distribution for the two populations and that the
samples, with size equal g andn; respectively, can be extracted independently. Introducing

the sample variances a3 and s? respectively, withs? >s?, the Eqg. (9) can be written as

_2/2

2/ , that is arF distribution with parameteng, =n,-1ev, =n, -1.
2

Using, also in this case, distributions with the same tail areas and denotin% \thi area

of each tail, the confidence interval for the ratio between the variances of each population,
with a confidence level equal to €1a)-100%, is defined as:
2
ii< Ul <L Sl 1 (14)
SF o ¢ F
E

For a confidence level equal to 95% and two degrees of freedom respectively
V,=6-1=5 and v, =6-1=5, respectively, we obtainFl_ﬂ = Fo975s = 0140 and
2

F, = Foos = 7146,
2
From Eg. 14, it is possible to evaluate the confidence interval for the ratio of the variances
concerning two populations in terms of wrong words with a confidence coefficient of 95%:

2375<—1<12123 1.54 9 < 11.0101 <2 9% < 1
Jl JZ 0-2
Also in this case, the interval dimension could be further reduced, not increasing the
sample size, which proves quite complex in this particular experimental condition, but
decreasing the coefficient to 90%, in order to find an optimal relationship between interval
dimension and confidence level.

4. A statistical model for the process variability

As an application off, , distribution, the paper takes into consideration the example

presented in the GUM par. H5, [1].

Let us consider a set afrepeated observations throughout each day and suppose that such
aset is reproduced in the following days. We denote ag the random variable associated
with k-observation throughout theday.

The model adopted can be represented as:

:m)+G, +T. j:]_‘...,m; k=1---,n

Z Jk/n H3+Gf T, with G_:z Jk/n (15)

k=1
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G and T; denote the random errors, with expected values zero, which distinguish
respectively the variability within a day (within variability) and the variability between days
(in periods of time such as, for example, weeks, months, years — between variability). We
hypothesize as normal the distribution of the model, so that:

G, =N(0,02); Gj = N(O,aé/n)' T,=N(0,0?); Gio+ T, = N(O,Ué/n+JT2)
G,= N(O JG/nm) T= (O JT/m)

(16)
G+ 1= No.oZ/nm+o? /m)

Due to the hypothesized independence among the observations, the random errors of the
model are independent also in their mutual behavior.
Consequently, we deduce the following property:

(v, -V,) is independent fronv,, and therefore fronG, 17.1)
(\TJD—\E) is independent fronvm and therefore frorrGTf'lTD (17.2)

Now it is possible to consider the following equation:

Z( D) —ZHZG’Zk ST =Xin X=X (18)
= = a_G a_é/n j.n jl j.n-1

with the Chi-square associated wjittiay andv degrees of freedom.

Summing up Eg. (18) with respect jtobearing for the property’(vzw2 =XV21 + )(VZ2

m
that ZX%,n—l :Xﬁ(n_l) due to the independence from day to day and dividing by the degrees
=1
of freedomm(n-1l), we assume:
m 2
XXV e

j=1 k=1 _ 0.2 /\/m( n-1) (19)

m(n-1) *m(n-1)

Taking into account thalE{)(f} =V, we can observe that the first member of Eq. (19) is

an unbiased estimat@ of &, being E{&Gz} =0Z.
Again, we introduce another important quantity, that is:

z (Vi) _z (G+1) (6.

_ — 12 _ 2 2
Eha e [nrar]m

(20)

where the property 17.2 has been taken into account.
By analogy with eq. (19) we can introduce the quantity:
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=1 -

m-1 n ' |m-1

S (Vi) {

2 2
3 Mﬂ Xina (21)
affirming that the first member represents an unbiased estim{[iéqf,ﬁz}
n

Considering the estimators of Eqgs. (19) and (21), we can also introduce an unbiased
estimatorg? for %, as:
m g/ —\2 m n —\2
Z(VJD_VDJJ) Z Z(ij _VJD)
gz = = ) (22)
m-1 m(n-1)

Recalling the variabléF, , defined in Eq. (9) and considering the unbiased estimators of
Eq. (19) and (21), the random varialff¢, can be represented as:
g
n T &

F(m[n-1],m-1)= (23)

In the particular case where the contribution of between-group variability (from day to
day) is null, thereforeﬁz— =0, Eqg. (23) can be simplified as:

=2
Og

F(m[ n_l] y m_l)zm
T

(24)

Equation (24) can also be useful to test the hypothesis of the insignificance of the
variability from day to day &7 =0). For this purpose, in Eq. (24), the estimators are

substituted by the corresponding values obtained in any specific measurement. If the value of
F,.., () so obtained is superior to O;8Bantile of theF, , distribution (for example), it

allows to reject the hypothesis and therefore to maintain that the variability from day to day is
statistically significant with a risk of 5%.

5. Conclusions

The aim of this paper is to estimate the uncertainty interval, in the case of inherent
variability of the measurement process, using Chi-square and Fisher distributions, that have
not yet found a role in the GUM [1] as well as the supplement [2].

Simulations with a software that generates random values observed for different degrees of
freedom and some practical examples were also developed in order to prove the theoretical
approach.

In addition, the cases of within and between variability have been also studied, assuming a
model for the process variability associated with the observations in different days. A test to
assess the significance of the daily variability through the use of the distributions introduced
in this paper complete this work.
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